Orthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion
نویسندگان
چکیده
In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix pursuit iteration, and find satisfactory results in a few iterations. Another advantage of our proposed algorithm is that it has only one tunable parameter, which is the rank. It is easy to understand and to use by the user. This becomes especially important in large-scale learning problems. In addition, we rigorously show that both versions achieve a linear convergence rate, which is significantly better than the previous known results. We also empirically compare the proposed algorithms with several state-of-the-art matrix completion algorithms on many real-world datasets, including the large-scale recommendation dataset Netflix as well as the MovieLens datasets. Numerical results show that our proposed algorithm is more efficient than competing algorithms while achieving similar or better prediction performance.
منابع مشابه
Orthogonal Rank-One Matrix Pursuit for Matrix Completion
Low rank modeling has found applications in a wide range of machine learning and data mining tasks, such as matrix completion, dimensionality reduction, compressed sensing, multi-class and multi-task learning. Recently, significant efforts have been devoted to the low rank matrix completion problem, as it has important applications in many domains including collaborative filtering, Microarray d...
متن کاملRank-One Matrix Pursuit for Matrix Completion
Low rank matrix completion has been applied successfully in a wide range of machine learning applications, such as collaborative filtering, image inpainting and Microarray data imputation. However, many existing algorithms are not scalable to large-scale problems, as they involve computing singular value decomposition. In this paper, we present an efficient and scalable algorithm for matrix com...
متن کاملExact Low-Rank Matrix Completion from Sparsely Corrupted Entries Via Adaptive Outlier Pursuit
Recovering a low-rank matrix from some of its linear measurements is a popular problem in many areas of science and engineering. One special case of it is the matrix completion problem, where we need to reconstruct a low-rank matrix from incomplete samples of its entries. A lot of efficient algorithms have been proposed to solve this problem and they perform well when Gaussian noise with a smal...
متن کاملHigh-Rank Matrix Completion and Clustering under Self-Expressive Models
We propose efficient algorithms for simultaneous clustering and completion of incomplete high-dimensional data that lie in a union of low-dimensional subspaces. We cast the problem as finding a completion of the data matrix so that each point can be reconstructed as a linear or affine combination of a few data points. Since the problem is NP-hard, we propose a lifting framework and reformulate ...
متن کاملA Rank Revealing Randomized Singular Value Decomposition (R3SVD) Algorithm for Low-rank Matrix Approximations
— In this paper, we present a Rank Revealing Randomized Singular Value Decomposition (R 3 SVD) algorithm to incrementally construct a low-rank approximation of a potentially large matrix while adaptively estimating the appropriate rank that can capture most of the actions of the matrix. Starting from a low-rank approximation with an initial guessed rank, R 3 SVD adopts an orthogonal Gaussian sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015